Apparent transverse relaxation rates in systems with coupled carbon-13 spins.

نویسندگان

  • Takuya F Segawa
  • Nicolas Aeby
  • Geoffrey Bodenhausen
چکیده

In systems with homonuclear scalar couplings, the envelopes of spin echoes obtained with simple refocusing pulses or trains of such pulses are normally modulated so that it is difficult to extract transverse relaxation rates. It has been shown recently that echo modulations can be quenched by cumulative pulse errors that arise after applying a large number of refocusing pulses with moderate rf amplitudes. The resulting unmodulated decays allow one to extract apparent transverse relaxation rates. Early work on systems comprising only two nitrogen-15 nuclei or two carbon-13 spins has recently been extended to systems with coupled protons. This work focuses on systems with three coupled carbon-13 spins, which in turn are coupled to several neighbouring protons. Unmodulated echo trains can be obtained by optimizing the pulse interval, the carrier frequency and the rf amplitude of the refocusing pulses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of transverse relaxation rates in systems with scalar-coupled spins: The role of antiphase coherences.

Homogeneous line-widths that arise from transverse relaxation tend to be masked by B0 field inhomogeneity and by multiplets due to homonuclear J-couplings. Besides well-known spin-locking sequences that lead to signals that decay with a rate R1ρ without any modulations, alternative experiments allow one to determine the transverse relaxation rates R2 in systems with scalar-coupled spins. We eva...

متن کامل

Interference between transverse cross-correlated relaxation and longitudinal relaxation affects apparent J-coupling and transverse cross-correlated relaxation

The apparent value of the measured J-coupling is affected by transverse cross-correlated relaxation between dipolar interaction and chemical shift anisotropy. This effect counteracts the decrease in the apparent value of J resulting from self-decoupling caused by longitudinal relaxation, thereby bringing the measured J-coupling closer to its true value. In addition to the dynamic frequency shif...

متن کامل

Optimal control of coupled spins in the presence of longitudinal and transverse relaxation

In this paper, we develop methods for optimal manipulation of coupled spin dynamics in the presence of relaxation. These methods are used to compute analytical bounds for the optimal efficiency of coherence transfer between coupled nuclear spins in presence of longitudinal and transverse relaxation. We derive relaxation optimized pulse sequences which achieve these bounds and maximize the sensi...

متن کامل

Resonator-induced dissipation of transverse nuclear-spin signals in cold nanoscale samples

The back action of typical macroscopic resonators used for detecting nuclear magnetic resonance can cause a reversible decay of the signal, known as radiation damping. A mechanical resonator that is strongly coupled to a microscopic sample can in addition induce an irreversible dissipation of the nuclear-spin signal, distinct from radiation damping. We provide a theoretical description of reson...

متن کامل

Coherent spin relaxation in molecular magnets

Numerical modelling of coherent spin relaxation in nanomagnets, formed by magnetic molecules of high spins, is accomplished. Such a coherent spin dynamics can be realized in the presence of a resonant electric circuit coupled to the magnet. Computer simulations for a system of a large number of interacting spins is an efficient tool for studying the microscopic properties of such systems. Coher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 12 33  شماره 

صفحات  -

تاریخ انتشار 2010